URL du flux RSS

ACCÈS LIBRE UNE Politique International Environnement Technologies Culture

▸ les 25 dernières parutions

11.06.2025 à 17:35

Trois littoraux où les jumeaux numériques pourraient permettre de mieux maîtriser les conséquences des inondations

Raquel Rodriguez Suquet, Ingénieure d'applications d'Observation de la Terre, Centre national d’études spatiales (CNES)
Vincent Lonjou, expert applications spatiales, Centre national d’études spatiales (CNES)
Les « jumeaux numériques » allient imagerie spatiale, mesures de terrain et modélisations sophistiquées – afin de fournir des informations fiables aux particuliers et aux décideurs publics. Zoom sur trois régions littorales.
Texte intégral (4026 mots)
Un jumeau numérique de la région de Nouméa est en cours d’élaboration. ©BRGM, Fourni par l'auteur

Entre sa densité de population et ses richesses naturelles, le littoral est une zone stratégique, mais vulnérable aux événements extrêmes et à la montée du niveau de la mer. Pour mieux prévenir les risques d’inondations côtières, les « jumeaux numériques » allient imagerie spatiale, mesures de terrain et modélisations sophistiquées – afin de fournir des informations fiables aux particuliers et aux décideurs publics.


La zone littorale, située à l’interface entre la terre et la mer, est une bande dynamique et fragile qui englobe les espaces marins, côtiers et terrestres influencés par la proximité de l’océan. À l’échelle mondiale, elle concentre une forte densité de population, d’infrastructures et d’activités économiques (tourisme, pêche, commerce maritime), qui en font un espace stratégique mais vulnérable.

Le niveau moyen global des mers de 1993 à 2025 et la densité de population sur le littoral métropolitain par façade maritime de 1962 à 2020 par kilomètre carré sur le littoral. Données des missions TopEx/Poseidon, Jason-1, Jason-2, Jason-3 et Sentinel-6MF (source AVISO, gauche) et source MTECT, Fourni par l'auteur

On estime qu’environ un milliard de personnes dans le monde et plus de 800 000 de personnes en France vivent dans des zones littorales basses, particulièrement exposées aux risques liés à la montée du niveau de la mer due au changement climatique et aux phénomènes météorologiques extrêmes. Les enjeux associés sont multiples : érosion côtière, submersions marines, perte de biodiversité, pollution, mais aussi pressions liées à la forte artificialisation du sol, due à la forte augmentation démographique et touristique. La gestion durable de la zone littorale représente un enjeu crucial en matière d’aménagement du territoire.

Dans le cadre de notre programme Space for Climate Observatory, au CNES, avec nos partenaires du BRGM et du LEGOS, nous créons des « jumeaux numériques » pour étudier les zones côtières dans un contexte de changement climatique et contribuer à leur adaptation.


À lire aussi : Pourquoi l’océan est-il si important pour le climat ?


Dans cet article, focus sur trois zones représentatives de trois sujets emblématiques des zones côtières : le recul du trait de côte en France métropolitaine, la submersion marine en Nouvelle-Calédonie (aujourd’hui liée aux tempêtes et aux cyclones, mais à l’avenir également affectée par l’élévation du niveau de la mer) et l’évolution des écosystèmes côtiers en termes de santé de la végétation, de risque d’inondation et de qualité de l’eau sur la lagune de Nokoué au Bénin.

Le trait de côte est en recul en France hexagonale

Avec près de 20 000 kilomètres de côtes, la France est l’un des pays européens les plus menacés par les risques littoraux. Sa façade maritime très urbanisée attire de plus en plus d’habitants et concentre de nombreuses activités qui, comme la pêche ou le tourisme, sont très vulnérables à ce type de catastrophes. Ainsi, cinq millions d’habitants et 850 000 emplois sont exposés au risque de submersion marine et 700 hectares sont situés sous le niveau marin centennal, c’est-à-dire le niveau statistique extrême de pleine mer pour une période de retour de 100 ans) dans les départements littoraux.


Tous les quinze jours, de grands noms, de nouvelles voix, des sujets inédits pour décrypter l’actualité scientifique et mieux comprendre le monde. Abonnez-vous gratuitement dès aujourd’hui !


Le trait de côte désigne la frontière entre la terre et la mer. Cette limite se modifie continuellement sous l’action de facteurs naturels tels que les marées, les tempêtes, le dépôt de sédiments, les courants marins et les vagues. En France hexagonale, un quart du littoral est concerné par un recul du trait de côte (soit plus de 5 000 bâtiments menacés d’ici 2050) du fait de l’érosion côtière, aggravée par le changement climatique qui s’accompagne, entre autres, d’une élévation du niveau marin et de la puissance des tempêtes.

des cartes avec des prévisions
Le recul du trait de côte à Hendaye dans les Pyrénées-Atlantiques (gauche) et la probabilité de l’occurrence d’eau. Bergsma et al. 2024, Fourni par l'auteur

Grâce à la télédétection par satellites, notamment Sentinel-2 et Landsat, il est possible d’observer avec précision la position du trait de côte et d’analyser sa dynamique sur le long terme. Ces informations permettent de mieux comprendre les phénomènes d’érosion ou d’accrétion (à rebours du recul du trait de côte, son avancée est due en bonne partie au dépôt sédimentaire et concerne 10 % du littoral français), ainsi que les risques liés à ces évolutions.

En réponse à ces enjeux, un jumeau numérique du trait de côte est en cours de construction à l’échelle de la France. Cet outil permettra de « prendre le pouls » de la zone côtière en fournissant des données actualisées à échelle mensuelle et trimestrielle aux acteurs concernés, des mairies aux ministères, afin de faciliter la prise de décision pour une gestion durable et adaptée du littoral. Par exemple, les principaux leviers d’actions sont la mise en place d’infrastructures de protection potentiellement fondées sur la nature, des opérations d’ensablement ou d’enrochement ainsi que l’évolution des autorisations d’urbanisme pouvant aller jusqu’à la destruction de bâtiments existants.

Les jumeaux numériques pour le littoral

    Aujourd’hui, les jumeaux numériques jouent un rôle clé dans l’amélioration de notre compréhension de l’hydrologie des bassins versants, de la dynamique des inondations et de l’évolution des zones côtières, qu’il s’agisse d’événements passés ou de la situation actuelle. Les données spatiales vont y occuper une place croissante: elles permettent de suivre l’évolution des territoires sur le long terme et de manière régulière, d’alimenter les modèles avec des informations précises et continues, et d’analyser les impacts à grande échelle. Les données spatiales sont particulièrement utiles pour observer les changements dans les zones peu accessibles ou mal instrumentées.

    Les jumeaux numériques contiennent également des capacités de modélisation qui, couplées aux données, permettent d’évaluer l’impact du climat futur ainsi que d’évaluer les meilleures solutions d’adaptation. Dans les années à venir, ces outils d’aide à la décision vont devenir incontournables pour les acteurs de la gestion des risques, de l’aménagement du territoire et de l’adaptation au changement climatique.


À lire aussi : Climat : Pourquoi l’ouverture des données scientifiques est cruciale pour nos littoraux


Risques d’inondations et qualité de l’eau à la lagune de Nokoué au Bénin

La lagune de Nokoué au Bénin est représentative des systèmes lagunaires d’Afrique de l’Ouest : bordée d’une large population qui avoisine les 1,5 million de personnes, cette lagune constitue une ressource vivrière majeure pour les habitants de la région.

cases dépassant de l’eau
La crue exceptionnelle de 2010 du lac Nokoué (sud du Bénin). André O. Todjé, Fourni par l'auteur

La lagune subit une importante variabilité naturelle, notamment aux échelles saisonnières sous l’influence de la mousson ouest-africaine. Ainsi, les zones périphériques sont inondées annuellement (en fonction de l’intensité des pluies), ce qui cause des dégâts matériels et humains importants. La lagune est aussi le cœur d’un écosystème complexe et fluctuant sous l’effet des variations hydrologiques, hydrobiologiques et hydrochimiques.

Là aussi, le changement climatique, avec la montée des eaux et l’augmentation de l’intensité des évènements hydrométéorologiques, contribue à faire de la lagune de Nokoué une zone particulièrement sensible.

Nous mettons en place un jumeau numérique de la lagune de Nokoué qui permettra de répondre aux besoins des acteurs locaux, par exemple la mairie, afin de lutter contre les inondations côtières en relation avec l’élévation du niveau de la mer, les marées et les événements météorologiques extrêmes.

imagerie satellite et modèles
La lagune de Nokoué vue par satellite (gauche) et la bathymétrie et maillage du modèle hydrodynamique SYMPHONIE. Sentinel-2 (gauche) et LEGOS/IRD/CNRS (droite), Fourni par l'auteur

En particulier, ce jumeau numérique permettra de modéliser la variabilité du niveau d’eau de la lagune en fonction du débit des rivières et de la topographie. Il géolocalisera l’emplacement des zones inondées en fonction du temps dans un contexte de crue — une capacité prédictive à court terme (quelques jours) appelée « what next ? »

Le jumeau numérique sera également en mesure de faire des projections de l’évolution du risque de crue sous l’effet du changement climatique, c’est-à-dire prenant en compte l’élévation du niveau de la mer et l’augmentation de l’intensité des pluies. Cette capacité prédictive sur le long terme, typiquement jusqu’à la fin du siècle, est appelée « what if ? »

Enfin, il permettra de modéliser et d’évaluer la qualité de l’eau de la lagune (par exemple sa salinité ou le temps de résidence de polluants). Par exemple, en période d’étiage, quand l’eau est au plus bas, la lagune étant connectée à l’océan, elle voit sa salinité augmenter de manière importante, bouleversant au passage l’équilibre de cet écosystème. Le riche écosystème actuel est en équilibre avec cette variation saisonnière mais des aménagements (barrages, obstruction du chenal de connexion à l'océan…) pourraient le mettre en péril.

Un démonstrateur de jumeau numérique consacré à la submersion marine en Nouvelle-Calédonie

L’élévation du niveau de la mer causée par le changement climatique, combinée aux marées et aux tempêtes, constitue un risque majeur pour les populations côtières à l’échelle mondiale dans les décennies à venir. Ce risque est « évolutif » — c’est-à-dire qu’il dépend de comment le climat évoluera dans le futur, notamment en fonction de notre capacité à atténuer les émissions de gaz à effet de serre.

Il est donc très important d’être capable de modéliser le risque de submersion marine et de projeter ce risque dans le futur en prenant en compte la diversité des scénarios d’évolution climatiques afin de supporter l’action publique au cours du temps, avec différentes stratégies d’adaptation ou d’atténuation : relocalisation de populations, modification du plan local d’urbanisme, création d’infrastructures de protection côtières qu’elles soient artificielles ou bien basées sur la nature.

La modélisation de la submersion marine nécessite une connaissance en 3D sur terre (du sol et du sursol, incluant bâtiments, infrastructures, végétation…), mais aussi – et surtout ! – sous l’eau : la bathymétrie. Si cette dernière est assez bien connue sur le pourtour de la France métropolitaine, où elle est mesurée par le Service hydrographique et océanographique de la marine (Shom), une grande partie des zones côtières en outre-mer est mal ou pas caractérisée.

En effet, le travail et le coût associé aux levés topobathymétriques in situ sont très élevés (supérieur à 1 000 euros par km2). À l’échelle du monde, la situation est encore pire puisque la très grande majorité des côtes n’est pas couverte par des mesures bathymétriques ou topographiques de qualité. Aujourd’hui, plusieurs techniques permettent de déterminer la bathymétrie par satellite en utilisant la couleur de l’eau ou le déplacement des vagues.

3 cartes
Le jumeau numérique de la région de Nouméa : génération du maillage à partir de la bathymétrie et de la topographie (gauche) ; projection climatique avec calcul de hauteur d’eau par submersion (centre) ; bâtiments impactés (droite). BRGM, C. Coulet, V. Mardhel, M. Vendé-Leclerc (2023) — Caractérisation de l’aléa submersion marine sur Grand Nouméa en Nouvelle-Calédonie. Rapport final — Méthodologie générale V1. BRGM/RP-72483-FR, 88 p., et Résultats Nouméa V1. BRGM/RP-72923-FR, 48 p, Fourni par l'auteur

En Nouvelle-Calédonie, nous explorons le potentiel des satellites pour alimenter un jumeau numérique permettant de faire des modélisations de submersion marine. Nous nous concentrons dans un premier temps sur la zone de Nouméa, qui concentre la majeure partie de la population et des enjeux à l’échelle de l’île. Une première ébauche de jumeau numérique de submersion marine a ainsi été réalisée par le BRGM. Il permet par exemple d’évaluer la hauteur d’eau atteinte lors d’un évènement d’inondation et les vitesses des courants sur les secteurs inondés.

Dans un deuxième temps, nous étudierons la capacité à transposer notre approche sur une autre partie de l’île, en espérant ouvrir la voie à un passage à l’échelle globale des méthodes mises en place.

The Conversation

Vincent Lonjou a reçu des financements du CNES

Raquel Rodriguez Suquet ne travaille pas, ne conseille pas, ne possède pas de parts, ne reçoit pas de fonds d'une organisation qui pourrait tirer profit de cet article, et n'a déclaré aucune autre affiliation que son organisme de recherche.

11.06.2025 à 11:41

Peut-on laisser un chargeur branché en permanence ?

Glen Farivar, Lecturer in Power Electronics, The University of Melbourne
Peut-on laisser les chargeurs branchés ? Consomment-ils encore de l’énergie ? Y a-t-il d’autres risques : surchauffe, départ de feu ?
Texte intégral (1751 mots)
Un chargeur qui reste branché consomme en continu une petite quantité d’énergie dont une partie se perd sous forme de chaleur. YG PhotoArtWorks/Shutterstock

Pour désigner l’énergie consommée par un chargeur qui reste branché sans être utilisé, les Québécois ont un joli terme : l’« énergie vampire » ou « énergie fantôme ». Cette énergie est-elle un mythe ? Peut-on laisser les chargeurs branchés ? Y a-t-il d’autres risques – du vieillissement accéléré à la surchauffe, voire au départ de feu ?


Combien de chargeurs possédez-vous ? Nous sommes entourés d’appareils électroniques rechargeables : téléphones mobiles, ordinateurs portables, montres intelligentes, écouteurs, vélos électriques, etc.

Il y a peut-être un chargeur de téléphone branché à côté de votre lit, que vous ne prenez jamais la peine de le débrancher quand vous ne l’utilisez pas. Et un autre, d’ordinateur portable, près de votre bureau ?

Mais est-ce risqué ? Y a-t-il des coûts cachés liés au fait de laisser les chargeurs branchés en permanence ?

Que contient un chargeur ?

Bien sûr, tous les chargeurs sont différents. En fonction de leur application et de la puissance requise, leur structure interne peut varier et être très simple… ou très complexe.

Toutefois, un chargeur classique reçoit le courant alternatif (AC) de la prise murale et le convertit en courant continu (DC) à basse tension, qui est adapté à la batterie de votre appareil.

Pour comprendre la différence entre courant continu et alternatif, il faut considérer le flux d’électrons dans un fil. Dans un circuit à courant continu, les électrons se déplacent dans une seule direction et continuent de tourner dans le circuit. Dans un circuit à courant alternatif, les électrons ne circulent pas et se bougent successivement dans un sens puis dans l’autre.

La raison pour laquelle nous utilisons les deux types de courant remonte à l’époque où les inventeurs Thomas Edison et Nicola Tesla débattaient de savoir quel type de courant deviendrait la norme. In fine, aucun n’a vraiment eu le dessus, et aujourd’hui, nous sommes toujours coincés entre les deux. L’électricité est traditionnellement générée sous forme de courant alternatif (quand on utilise des bobines d’alternateurs), mais les appareils modernes et les batteries requièrent un courant continu. C’est pourquoi presque tous les appareils électriques sont équipés d’un convertisseur AC-DC.

Pour effectuer la conversion du courant alternatif en courant continu, un chargeur a besoin de plusieurs composants électriques : un transformateur, un circuit pour effectuer la conversion proprement dite, des éléments de filtrage pour améliorer la qualité de la tension continue de sortie, et un circuit de contrôle pour la régulation et la protection.

Un chargeur partiellement cassé avec deux broches et les puces internes exposées
Les chargeurs ont plusieurs composants électriques pour convertir le courant alternatif en courant continu que la batterie peut utiliser. PeterRoziSnaps/Shutterstock

Les chargeurs consomment de l’énergie même lorsqu’ils ne chargent rien

L’« énergie vampire », ou « énergie fantôme » – le terme utilisé par les Québécois pour désigner l’énergie consommée par un chargeur qui reste branché sans être utilisé – est bien réelle.


Tous les quinze jours, de grands noms, de nouvelles voix, des sujets inédits pour décrypter l’actualité scientifique et mieux comprendre le monde. Abonnez-vous gratuitement dès aujourd’hui !


Si vous le laissez branché, un chargeur consommera continuellement une petite quantité d’énergie. Une partie de cette énergie est utilisée pour faire fonctionner les circuits de contrôle et de protection, tandis que le reste est perdu sous forme de chaleur.

Si l’on considère un petit chargeur individuel, l’énergie vampire – également connue sous le nom d’énergie de veille – est négligeable. Toutefois, si vous additionnez la consommation des chargeurs de tous les appareils de la maison, le gaspillage d’énergie peut devenir important au fil du temps. De plus, l’énergie de veille n’est pas l’apanage des chargeurs : d’autres appareils électroniques, comme les téléviseurs, consomment également un peu d’énergie lorsqu’ils sont en veille.

Selon le nombre d’appareils laissés branchés, cela peut représenter plusieurs kilowattheures au cours d’une année.

Ceci étant, les chargeurs modernes sont conçus pour minimiser la consommation d’énergie vampire, avec des composants de gestion de l’énergie intelligents, qui les maintiennent en veille jusqu’à ce qu’un appareil externe tente de tirer de l’énergie.

Vue sous un bureau avec de nombreux appareils branchés sur une multiprise
Le fait d’avoir de nombreux chargeurs branchés dans votre maison peut entraîner une consommation d’énergie vampire considérable. Kit/Unsplash

Les autres risques des chargeurs laissés branchés

Les chargeurs s’usent au fil du temps lorsqu’ils sont traversés par un courant électrique, en particulier lorsque la tension du réseau électrique dépasse temporairement sa valeur nominale. Le réseau électrique est un environnement chaotique et diverses hausses de tension se produisent de temps à autre.

Exposer un chargeur à ce type d’événements peut raccourcir sa durée de vie. Si ce n’est pas vraiment un problème pour les appareils modernes, grâce aux améliorations sur leur conception et leur contrôle, il est particulièrement préoccupant pour les chargeurs bon marché et non certifiés. Ceux-ci ne présentent souvent pas les niveaux de protection appropriés aux surtensions, et peuvent constituer un risque d’incendie.

Comment dois-je traiter mes chargeurs ?

Bien que les chargeurs modernes soient généralement très sûrs et qu’ils ne consomment qu’un minimum d’énergie vampire, il n’est pas inutile de les débrancher de toute façon – quand c’est pratique.

En revanche, si un chargeur chauffe plus que d’habitude, fait du bruit, ou est endommagé d’une manière ou d’une autre, il est temps de le remplacer. Et il ne faut surtout pas le laisser branché.

The Conversation

Glen Farivar ne travaille pas, ne conseille pas, ne possède pas de parts, ne reçoit pas de fonds d'une organisation qui pourrait tirer profit de cet article, et n'a déclaré aucune autre affiliation que son organisme de recherche.

11.06.2025 à 11:39

Les mouvements d’une foule ne sont pas chaotiques mais prévisibles

François Gu, Post-doctorant, Massachusetts Institute of Technology (MIT)
Benjamin Guiselin, Maître de conférences en physique, Université de Montpellier
La foule intimide voire terrifie certaines personnes, car ses mouvements peuvent conduire à des drames. C’est pourquoi, mieux les comprendre est essentiel.
Texte intégral (1678 mots)
La Plaza Consistorial (Pampelune) pendant le « Chupinazo ». Fourni par l'auteur

La foule intimide voire terrifie certaines personnes. Ses mouvements peuvent conduire à des drames. C’est pourquoi mieux les comprendre est essentiel. Une nouvelle étude démontre que ces mouvements ne sont pas chaotiques comme on pourrait l’imaginer, mais, au contraire, quasi circulaires et périodiques.


Vous avez déjà vécu l’expérience d’être au milieu d’une foule compacte dans un espace confiné : sur les quais du métro bondés à l’heure de pointe, devant un magasin pour la sortie du dernier livre d’une autrice à succès, ou encore devant la scène lors d’un concert. Au-delà de l’inconfort suscité par les contacts physiques fréquents involontaires avec vos voisins, ces situations semblent incontrôlables et potentiellement dangereuses : on se sent comme contraint de bouger selon un mouvement dicté par l’impatience ou la pression exercée par les autres. Mais quelle est véritablement la nature des mouvements des individus au sein d’une foule dense ? Et peut-on en comprendre l’origine, notamment afin d’anticiper des drames ?

Si l’on se fie à notre intuition, ces mouvements semblent aléatoires et imprévisibles. Pourtant, notre étude, menée au sein de l’équipe de Denis Bartolo, professeur à l’ENS Lyon, et récemment publiée dans la revue Nature, révèle un phénomène contre-intuitif : au lieu d’un chaos désordonné, la foule bouge collectivement selon un mouvement régulier et spontané. Au-delà d’une densité critique de quatre personnes par mètre carré (imaginez-vous à quatre personnes dans une cabine de douche !), et sans consigne extérieure, la foule adopte spontanément un mouvement quasi circulaire et périodique.

Notre expérience : les fêtes de Pampelune et son « Chupinazo »

Notre premier défi, pour caractériser la dynamique des foules denses, était de taille : réaliser des expériences pour filmer, avec un bon angle de vue, la dynamique de centaines d’individus, tout en évitant les accidents. Il était donc évident qu’on ne pouvait pas faire cela dans notre laboratoire. L’opportunité idéale s’est présentée, quand Iker Zuriguel, professeur à l’Université de Navarre, nous a parlé des fêtes de San Fermín en Espagne. Chaque année, le 6 juillet, environ 5 000 personnes se rassemblent Plaza Consistorial, à Pampelune, pour la cérémonie du « Chupinazo », qui marque le début d’une semaine de fêtes. La densité atteint environ 6 personnes par mètre carré !

Cette place, qui mesure 50 mètres de long par 20 mètres de large, est délimitée par des immeubles de plusieurs étages, dont les balcons donnent une vue imprenable sur ce qui se passe sur la place. Nous avons filmé lors de quatre éditions avec huit caméras placées sur deux balcons les mouvements de la foule avec une très bonne résolution. Nous avons ainsi collecté un jeu de données unique au monde pour l’étude des foules denses.


Tous les quinze jours, de grands noms, de nouvelles voix, des sujets inédits pour décrypter l’actualité scientifique et mieux comprendre le monde. Abonnez-vous gratuitement dès aujourd’hui !


La foule oscille en synchronie

Grâce à une technique utilisée, par exemple en aérodynamique, nous avons pu cartographier les vitesses de déplacement dans la foule, comme on suit des courants d’air autour d’un avion. Nous en avons extrait que tous les individus dans un rayon d’environ 10 mètres se déplaçaient dans la même direction.

Lors du « Chupinazo », la densité de personnes est très importante, de l’ordre de six personnes par mètre carré : il faut donc imaginer environ 500 personnes entraînées ensemble de façon spontanée, ce qui représente une masse de plusieurs dizaines de tonnes en mouvement.

Nous avons également montré que la direction du mouvement de cette masse tournait progressivement, avant de revenir à son point de départ, toutes les 18 secondes. Autrement dit, les individus ne se déplacent pas de manière chaotique, mais suivent des trajectoires quasi circulaires et périodiques.

Ce mouvement lent s’explique par le fait que ce ne sont pas des individus isolés qui bougent, mais plusieurs centaines, entraînés les uns avec les autres.

Enfin, nous avons observé que les mouvements circulaires oscillants de la foule se font autant dans le sens des aiguilles d’une montre que dans le sens inverse, alors même que la majorité des êtres humains sont droitiers ou qu’ils ont tendance à s’éviter par la droite dans les pays occidentaux. Les facteurs cognitifs et biologiques ne sont donc plus pertinents pour expliquer le déplacement des masses d’individus dans les foules denses qui sont entraînées dans des mouvements à très grande échelle.

L’origine de l’oscillation spontanée des foules

Pour modéliser mathématiquement la dynamique d’une foule, constituée d’un ensemble de piétons, il apparaît naturel de considérer les individus comme des particules en interaction.

Prenez un piéton au sein de cette foule. Il subit des forces qui le mettent en mouvement. Ces forces peuvent avoir une origine physique – comme des forces de contact avec un mur ou un autre piéton – ou une origine cognitive – comme lorsqu’on cherche à éviter un autre piéton. Malheureusement, la modélisation mathématique de ces forces repose sur de nombreuses hypothèses invérifiables sur le comportement des individus, ce qui rend cette approche irréalisable.

Il n’est en réalité pas nécessaire de décrire la dynamique de chaque individu pour prédire la dynamique de la foule. Prenez l’écoulement de l’eau dans un tuyau : les lois de la physique permettent de prédire l’écoulement de l’eau, alors même que déterminer la force subie par une seule molécule d’eau dans cet écoulement s’avère impossible.

Nous avons donc déterminé l’équation qui décrirait le mouvement d’une masse d’individus entraînés tous ensemble, sans déterminer les lois qui régissent le mouvement d’un seul piéton. Notre démarche n’utilise que des principes fondamentaux de la physique (conservation de la masse, conservation de la quantité de mouvement) et ne fait aucune hypothèse comportementale sur le mouvement des individus. Elle nous a permis de construire un modèle mathématique dont la résolution a montré un excellent accord avec les observations expérimentales.

Une nouvelle méthode de prévention des accidents de foule ?

Nous avons également analysé des vidéos issues des caméras de surveillance de la Love Parade de 2010 à Duisbourg, en Allemagne. Bien que cette foule soit très différente de celle du « Chupinazo », nous y avons observé les mêmes oscillations collectives. Cela suggère que ce comportement de masse est universel, indépendamment du type d’événement ou du profil des participants.

Comme nous l’avons souligné précédemment, ces oscillations peuvent mettre en mouvement plusieurs dizaines de tonnes. Nous pensons qu’un tel déplacement non contrôlé de masse peut devenir dangereux. Lors du « Chupinazo », aucun accident n’a jamais été signalé, sans doute parce que l’événement est court (une à deux heures) et que les participants y viennent de leur plein gré, avec une certaine conscience des risques. Ce n’était pas le cas lors de la Love Parade de 2010, où un accident a causé des dizaines de morts et des centaines de blessés. Juste avant que l’accident ne se produise, nous avons détecté ces oscillations.

Cette détection peut se faire en temps réel, à partir d’une analyse directe et simple des caméras de vidéosurveillance. Et puisque cette dynamique est universelle, la même méthode pourrait être appliquée à d’autres foules. Ainsi, nos découvertes pourraient, dans le futur, inspirer le développement d’outils de détection et de prévention d’accidents de masse.

The Conversation

Ce travail a été soutenu par le Conseil européen de la recherche (ERC) dans le cadre du programme de recherche et d'innovation Horizon 2020 de l'Union européenne (convention de subvention numéro 101019141) (D.B.) et par la subvention numéro PID2020-114839GB-I00 soutenue par MCIN/AEI/10.13039/501100011033 (I.Z.).

Benjamin Guiselin ne travaille pas, ne conseille pas, ne possède pas de parts, ne reçoit pas de fonds d'une organisation qui pourrait tirer profit de cet article, et n'a déclaré aucune autre affiliation que son organisme de recherche.

11.06.2025 à 11:39

Science, éducation, médias : quels rôles pour les climatologues aujourd’hui ? Conversation avec Éric Guilyardi

Éric Guilyardi, Directeur de recherche au CNRS, Laboratoire d’océanographie et du climat, LOCEAN, Institut Pierre-Simon Laplace, Sorbonne Université
Ce grand entretien est l’occasion de mieux comprendre les liens entre l’océan et le climat et de réfléchir à la place du scientifique dans les médias et plus généralement dans la société.
Texte intégral (4528 mots)

Éric Guilyardi est océanographe et climatologue, spécialiste de modélisation climatique. Il s’intéresse tout particulièrement au phénomène climatique El Niño. Il a été auteur principal du 5e rapport du GIEC et a contribué au 6e. Il anime également une réflexion sur l’éthique de l’engagement public des scientifiques. Ce grand entretien, mené par Benoît Tonson, est l’occasion de mieux comprendre les liens entre l’océan et le climat et de réfléchir à la place du scientifique dans les médias et plus généralement dans la société, au moment où se tient la troisième Conférence des Nations unies sur l’océan (Unoc 3) à Nice.


The Conversation : Quels sont les liens entre le climat et l’océan ?

Éric Guilyardi : Le climat résulte de nombreuses interactions entre les composantes de ce que l’on appelle le « système Terre », dont l’atmosphère, l’océan, les surfaces continentales et la cryosphère (toutes les portions de la surface des mers ou terres émergées où l’eau est présente à l’état solide). L’océan est au cœur du système Terre car c’est son principal réservoir d’énergie. Les deux premiers mètres de l’océan contiennent en effet autant d’énergie que les 70 km de la colonne atmosphérique qui la surplombe ! Profond en moyenne de 4 000 mètres son immense inertie thermique en fait un gardien des équilibres climatiques. Par exemple, dans les régions au climat océanique, cette inertie se traduit par moins de variations de température, que ce soit dans une même journée ou à travers les saisons. L’océan est également un acteur des variations lentes du climat. Par exemple, le phénomène El Niño sur lequel je travaille, résulte d’interactions inter-annuelles entre l’océan et l’atmosphère qui font intervenir la mémoire lente de l’océan, située dans le Pacifique tropical ouest, vers 400 mètres de profondeur. Allant chercher une mémoire plus en profondeur, l’océan est également source de variations lentes qui influencent le climat depuis l’échelle décennale (mémoire vers 1 000 mètres de profondeur) jusqu’à des milliers d’années (entre 2 000 et 4 000 mètres).

L’océan joue un rôle fondamental dans le changement climatique, à la fois parce qu’il permet d’en limiter l’intensité, en absorbant à peu près un quart des émissions de carbone que l’activité humaine envoie dans l’atmosphère (via la combustion des énergies fossiles).

L’océan est donc notre allié, puisqu’il permet de limiter les impacts du changement climatique, mais il en subit également les conséquences. Sous l’effet de l’augmentation de la température, l’eau se dilate, elle prend plus de place et le niveau de la mer monte. La moitié de l’augmentation du niveau marin global (4 mm/an et environ 20 cm depuis 1900) est due à cette dilatation thermique. L’autre vient de la fonte des glaciers continentaux (en montagne, mais aussi de la fonte des calottes polaires en Antarctique et au Groenland).


Tous les quinze jours, de grands noms, de nouvelles voix, des sujets inédits pour décrypter l’actualité scientifique et mieux comprendre le monde. Abonnez-vous gratuitement dès aujourd’hui !


Dans le couple océan-atmosphère, l’atmosphère c’est un peu le partenaire nerveux, qui va vite : une dépression, qui se crée par exemple au nord du Canada, traverse l’Atlantique, arrive en Europe et disparaît au-dessus de la Sibérie aura une durée de vie de quelques semaines. Les structures équivalentes dans l’océan sont des tourbillons plus petits mais plus lents qui peuvent rester cohérents pendant des années, voire des dizaines d’années.

Vous avez commencé à évoquer El Niño, qu’est-ce que c’est ?

É. G. : Ce sont les pêcheurs sud-américains qui ont donné le nom d’El Niño a un courant chaud qui est présent tous les ans au moment de Noël le long des côtes du Pérou et du Chili (d’où « l’Enfant Jésus », El Niño en espagnol). Le reste de l’année, et en « année normale », des eaux froides et riches en nutriments remontent des profondeurs, faisant de cette région une des plus poissonneuses de la planète.

Mais certaines années, le courant chaud reste toute l’année – cela devient une année El Niño et la pêche s’arrête, un signal que l’on retrouve dans les registres de pêche depuis des siècles.

Alors qu’est-ce qu’il se passe ? Dans le pacifique, les années « normales » (Fig. 1), des alizés soufflent d’est en ouest. Ces vents font remonter des eaux froides venant des profondeurs à la fois le long de l’équateur, dans l’est, mais aussi le long des côtes du Pérou et du Chili. L’eau chaude des tropiques s’accumule à l’ouest, autour de l’Indonésie et du nord de l’Australie.

Schéma de la différence entre une année normale et une année El Niño. La thermocline est la zone sous-marine de transition thermique rapide entre les eaux superficielles (chaudes) et les eaux profondes (froides). Fourni par l'auteur

Certaines années, des anomalies peuvent perturber ce système. Cela peut venir d’une anomalie de température vers le centre du Pacifique, par exemple sous l’effet de coup de vent d’ouest, des vents qui vont contrer les alizés pendant un moment. Si on a moins de différence de température, on a moins d’alizés, donc moins de remontée d’eaux froides. De l’eau plus chaude va s’étendre dans l’est et amplifier l’anomalie initiale. Le système s’enraye, les alizés s’affaiblissent et des anomalies de température de plusieurs degrés Celsius apparaissent dans d’immenses régions du Pacifique central et du Pacifique Est. Ces perturbations vont durer un an et c’est ce que l’on appelle un événement El Niño.

Aujourd’hui, on comprend bien les mécanismes de base de ce phénomène, on sait prévoir les impacts pour le bassin pacifique ainsi que pour les nombreuses régions de la planète que El Niño influence. On sait que l’anomalie se produit à intervalles irréguliers (tous les trois à sept ans). Le dernier a eu lieu en 2023-2024.

On parle également de La Niña, qu’est-ce que c’est ?

É. G. : C’est la petite sœur d’El Niño, dont les impacts sont en miroir puisque l’on assiste à des anomalies froides dans le Pacifique central et Est, liées à des alizés plus forts, au lieu d’anomalies chaudes. On peut la décrire comme une année normale avec des alizés plus forts. Ce n’est pas un miroir parfait car El Niño a tendance à être plus fort et La Niña plus fréquent.

Depuis quand travaillez-vous sur ce sujet ?

É. G. : J’ai d’abord fait une thèse sur les échanges océan-atmosphère à partir du milieu des années 1990. À cette époque, il n’existait pas encore de modèle climatique global en France. On en avait un qui simulait l’atmosphère, et un autre, l’océan. Mon premier travail a donc consisté à « coupler » ces deux modèles. J’ai commencé à m’intéresser au phénomène El Niño lors d’un postdoctorat dans un laboratoire d’océanographie (le LODYC, ancêtre du LOCEAN). J’ai poursuivi mes recherches à l’université de Reading en Grande-Bretagne avec des spécialistes de l’atmosphère tropicale. En effet, pour comprendre El Niño, il faut s’intéresser à la fois à l’atmosphère et à l’océan. À cette époque, je développais des simulations informatiques et j’analysais comment ces simulations représentaient le phénomène El Niño.

On a vraiment assisté à de grandes avancées depuis les années 1990. Non seulement nous arrivons à représenter El Niño dans ces modèles, mais la prévision saisonnière opérationnelle permet aujourd’hui de prévoir El Niño six neuf mois à l’avance. C’est-à-dire qu’on a suffisamment bien compris les mécanismes et que nous disposons d’un réseau d’observation de qualité.

Une des découvertes à laquelle j’ai contribué, à la fois importante et étonnante, a été de démontrer le rôle prépondérant de l’atmosphère dans la définition des caractéristiques d’El Niño. Pendant longtemps, nous avons considéré qu’un phénomène qui arrive tous les 3 à 7 ans était principalement une question d’océan et d’océanographe, car liée à la mémoire lente de l’océan.

Grâce à des modèles toujours plus précis, nous nous sommes en fait rendu compte que l’atmosphère jouait un rôle dominant, en particulier à travers le rôle des vents, des flux de chaleur, de la convection atmosphérique et des nuages associés.

Pourquoi est-ce si important d’étudier ce phénomène en particulier ?

É. G. : El Niño est la principale anomalie interannuelle du climat à laquelle les sociétés et les écosystèmes doivent faire face. On a vu l’impact sur la pêche au Pérou ou au Chili. Aujourd’hui, la décision d’armer ou non les flottes de pêche de ces pays dépend des prévisions saisonnières d’El Niño, d’où leur importance.

Il y a d’autres impacts liés à ce que nous appelons des « téléconnections », c’est-à-dire des sortes de ponts atmosphériques qui connectent les anomalies du Pacifique tropical aux autres régions du globe, en particulier dans les tropiques. Par exemple, en Indonésie, une année El Niño particulièrement marquée peut diviser la récolte de riz par deux. Il y a aussi de nombreux impacts en l’Afrique, en particulier en Afrique de l’Est : des inondations pendant El Niño, des sécheresses pendant La Niña, avec des impacts humanitaires très sévères dans des pays déjà vulnérables. Les agences humanitaires utilisent aujourd’hui les prévisions saisonnières pour pouvoir anticiper ces événements extrêmes et leurs impacts. Il y a aussi des impacts en Californie, qui voit ses précipitations augmenter pendant El Niño et diminuer pendant La Niña, amplifiant les impacts de la sécheresse liée au changement climatique.

On lie souvent ces événements extrêmes au changement climatique, peut-on faire un lien direct entre El Niño et le changement climatique ?

É. G. : Il y a trois aspects à retenir sur les liens avec le changement climatique : l’un avéré, un autre qui est une question de recherche et enfin un aspect trompeur. Celui qui est avéré vient du fait qu’une atmosphère plus chaude contient plus d’humidité. Donc quand il pleut plus, il pleut encore plus du fait du réchauffement climatique. Pendant El Niño, il y a par exemple des précipitations intenses dans certaines régions qui étaient plutôt sèches, par exemple le Pacifique central ou les côtes du Pérou et du Chili. Il y en a d’autres en Afrique centrale et de l’est, comme nous l’avons vu aussi. Donc ces événements extrêmes vont être plus extrêmes du fait du réchauffement climatique. Ce premier aspect est bien documenté, en particulier dans les rapports du GIEC.

La seconde question qui se pose est de savoir si El Niño lui-même va changer. Est-ce que son intensité, sa fréquence, sa localisation vont évoluer ? Cela reste une question de recherche. Il y a une série d’études basées sur des résultats de modélisation qui suggère que la fréquence des événements les plus forts pourrait augmenter. Mais il faut rester prudent car ces simulations numériques, fiables à l’échelle saisonnière, ont encore des biais à plus long terme. Il reste de nombreuses questions dont la communauté scientifique s’empare avec énergie.

Enfin, l’aspect trompeur est de penser qu’El Niño accélère le changement climatique. C’est d’abord une confusion d’échelle de temps : El Niño modifie la température planétaire d’une année sur l’autre alors que le réchauffement la modifie dans le temps long (décennies). Ensuite, il est arithmétiquement compréhensible qu’El Niño modifie la température moyenne car le Pacifique tropical représente un quart de la surface de la planète. Mais cela ne veut pas dire que la température augmente de façon durable sur le reste du globe. La focalisation de la communication climatique sur la température moyenne annuelle et d’éventuels records une année particulière encourage cette confusion.

Comment prévoit-on El Niño ?

É. G. : Aujourd’hui les systèmes de prévisions opérationnels, par exemple à Météo-France ou au Centre européen de prévision à moyen terme en Europe ou à la NOAA aux USA, prévoient ce phénomène environ 6 à 9 mois à l’avance. Un réseau d’observation couvre le Pacifique tropical composé essentiellement de bouées fixes et dérivantes et de satellites. Ce réseau permet de mesurer la température, les courants et les autres paramètres qui vont permettre d’établir avec précision l’état actuel de l’océan qui est la base d’une prévision de qualité. On va ainsi pouvoir détecter l’accumulation de chaleur dans le Pacifique Ouest, qui se traduit par une anomalie de température de plusieurs degrés vers 300 mètres de profondeur, et qui est un précurseur d’El Niño.

Cette condition nécessaire n’est pas suffisante car il faut un déclencheur, en général une anomalie de vent d’Ouest en surface. Le fait que celle-ci soit plus difficile à prévoir explique la limite de prévisibilité à 6 à 9 mois.

Par exemple, en 2014, Le système était rechargé en chaleur en profondeur et les prévisions indiquaient une forte probabilité d’El Niño cette année-là… qui n’a pas eu lieu car l’atmosphère n’a pas déclenché l’événement. Il a fallu attendre 2015 pour avoir El Niño et évacuer cette chaleur accumulée vers les plus hautes latitudes.

Les enjeux de recherche actuels, issus des besoins de la société, sont de prévoir plus finement le type d’El Niño. Va-t-il être plutôt fort ou plutôt faible ? Sera-t-il localisé plutôt dans l’Est du Pacifique ou plutôt dans le centre ? Les enjeux de prévision sont importants puisque les impacts ne seront pas les mêmes.

On le voit, vos travaux ont un impact sur certaines grandes décisions politiques, vous avez fait partie des auteurs du cinquième rapport du GIEC, cela vous a également exposé au système médiatique, comment l’avez-vous vécu ?

É. G. : J’ai d’abord pensé qu’il était important de partager ce que nous scientifiques savons sur le changement climatique, donc j’y suis allé. Sans être forcément très préparé et cela a pu être un peu rock’n’roll au début ! Ensuite, grâce à des media training, j’ai mieux compris le monde des médias, qui a des codes et des temporalités très différents de ceux du monde de la recherche. Depuis, les sollicitations viennent en fait de toute part, elles ne sont pas que médiatiques. En ce qui me concerne, j’ai décidé de principalement m’investir dans l’éducation, à travers la présidence de l’Office for Climate Education, qui a pour mission d’accompagner les enseignants du primaire et du secondaire pour une éducation au climat de qualité et pour toutes et tous. C’est un engagement qui fait sens.

Je suis également engagé dans une réflexion sur le rôle du scientifique dans la société. Nous avons créé un groupe de réflexion éthique au sein de l’Institut Pierre-Simon Laplace pour échanger collectivement sur ces enjeux science-sociéte et les différentes postures possibles.

Cette réflexion était essentiellement individuelle ou faite entre deux portes dans les couloirs de nos laboratoires. Les enjeux sont tels que nous avons décidé de nous en emparer collectivement. Cela m’a amené å rejoindre le Comité d’éthique du CNRS pour lequel j’ai co-piloté un avis sur l’engagement public des chercheurs. « L’engagement public », c’est quand un chercheur s’exprime publiquement en tant que chercheur pour pousser à l’action (par exemple une biologiste qui dit « vaccinez-vous » ou un climatologue qui suggère de moins prendre l’avion). C’est donc différent de la médiation ou de la communication scientifique qui n’ont, en général, pas cet objectif « normatif ». L’engagement public ainsi défini ne fait pas partie de la fiche de poste des chercheurs, mais c’est important que des scientifiques puissent le faire. Car si ce n’est pas eux qui interviennent dans le débat public, ce sera peut-être des personnes avec moins d’expertise.

Mais n’est-ce pas un risque pour le chercheur de s’engager ainsi ?

É. G. : Si bien sûr ! Un risque pour sa réputation académique, pour l’image de son institution, voire même pour l’image de la recherche. Pour le faire de façon sûre et responsable, il faut donc avoir conscience des valeurs que porte un tel engagement et en faire état. Car l’expression publique, même d’un chercheur, n’est pas neutre. Les mots que l’on va choisir, le ton de sa voix, la façon de se présenter, portent un récit et donc des valeurs. Clarifier ces valeurs personnelles pour ne pas tromper son auditoire, le laissant croire à une prétendue neutralité, a aussi l’avantage de ne pas risquer d’être perçu comme militant.

C’est un travail d’acculturation nouveau pour notre communauté, que d’autres sciences pratiquent depuis plus longtemps, comme les sciences médicales. Nous devons collectivement mieux comprendre la société et ses ressorts pour n’être ni naïfs, ni instrumentalisés, et rester pertinents. Il faut par exemple être particulièrement vigilant avec des porteurs d’intérêts privés (entreprises, ONG, partis politiques) qui peuvent vouloir chercher une forme de légitimation de leur agenda auprès des chercheurs.

Qu’est-ce qui a changé dans votre pratique des médias après toutes ces réflexions ?

É. G. : Tout d’abord, j’interviens nettement moins dans les médias. Les journées n’ont que 24 heures et je me suis rendu compte que ma valeur ajoutée n’était pas très élevée, l’angle de l’interview étant la plupart du temps décidé à l’avance. De plus, la pression sur les journalistes rend l’expression d’une nuance très difficile. L’injonction à prendre parti entre deux positions extrêmes me semble stérile même si je comprends que cela puisse faire de l’audimat.

J’ai joué ce jeu pendant un temps, mais j’ai fini par me rendre compte que je participais à un récit essentiellement catastrophiste et que mes tentatives de nuances étaient vaines. Et je ne parle même pas des réseaux sociaux, avec leurs algorithmes conçus pour polariser, que je ne pratique donc pas. Ce type de récit d’alerte a sans doute eu son utilité mais je suis convaincu qu’il est aujourd’hui contre-productif. Je suis aussi de plus en plus gêné quand on me tend le micro pour me demander ce qu’il faudrait faire. On entend souvent le message : « on connaît les solutions mais on ne les met pas en œuvre parce que, soit l’on n’écoute pas assez les scientifiques, soit il y a des “méchantes” entreprises, soit il y a des politiques incompétents ». Mais je ne suis pas sûr qu’il y ait des solutions clairement identifiées. Pour moi, le défi environnemental (climat, biodiversité, pollution) est comme la démocratie ou les droits de l’Homme, il n’y pas de solutions mais une attention de tous les instants, une réflexion démocratique sur le monde que nous voulons, le niveau de risque acceptable, le niveau d’inégalités acceptable, etc. C’est une discussion essentiellement politique, au sens noble du terme, dans laquelle l’avis des scientifiques n’a pas plus de poids que celui de chaque citoyen. Trop donner la parole aux scientifiques (ce que vous faites dans cet interview !) c’est risquer de dépolitiser des enjeux essentiels et ouvrir la porte à un backlash des populations.

D’où l’importance de l’éducation, pour bien percevoir la complexité des enjeux, bien différencier les registres de connaissance (scientifique, croyances, valeurs…), comprendre les liens et l’articulation entre les différents défis, et éviter ainsi de tomber dans des visions étroites du monde ou de l’avenir, forcément angoissantes. Le sentiment simpliste qu’il y aurait des solutions peut aussi générer de la colère envers les dirigeants qui ne les mettraient, donc, pas en œuvre.

Que proposez-vous pour avancer ?

É. G. : Tout d’abord retrouver de la nuance, de la complexité, affirmer haut et fort qu’il n’y a pas que le climat et la température moyenne de la Terre dans la vie, apprendre à préparer l’avenir positivement. Il y a 17 objectifs du développement durable qui sont autant de sources de malheur humain. A mes yeux de citoyen, il n’y en a pas un qui serait plus important ou plus urgent que les autres. Les éventuelles priorités dépendent de la société que nous voulons, du niveau de risque acceptable et sont donc ancrées localement et culturellement. Regardez comment les différents pays ont fait des choix politiques très différents face au même virus pendant le Covid ! Placer le débat d’abord au niveau du monde que nous voulons, c’est faire un grand pas en avant, même si le chemin reste long.

On me traite souvent « d’optimiste » face à tous ces défis. Mais en fait, pour moi, la période que nous vivons est passionnante ! Nous sommes face à une transition majeure, rare dans l’histoire de l’humanité. Oui c’est vrai, et il ne faut pas se voiler la face, cette transition aura son lot de risques et de malheurs et il y a des intérêts du monde ancien qui résisteront longtemps et farouchement. Mais un nouveau monde de possibles s’ouvre à nous – c’est terriblement excitant, en particulier pour les jeunes !


Éric Guilyardi est coordinateur du projet METRO (Modulation d’ENSO par la variabilité intrasaisonnière dans le Pacifique tropical et impact du changement climatique) et dirige le projet ARCHANGE (Changement climatique et Arctique et circulation océanique globale), tous deux soutenus par l’Agence nationale de la recherche (ANR). L’ANR a pour mission de soutenir et de promouvoir le développement de recherches fondamentales et finalisées dans toutes les disciplines, et de renforcer le dialogue entre science et société. Pour en savoir plus, consultez le site de l’ANR.

The Conversation

Éric Guilyardi est membre du Comité d'éthique du CNRS et du Conseil scientifique de l'Éducation nationale. Il est aussi président de l'Office for Climate Education et expert auprès de l'UNESCO et de l'OCDE.

11.06.2025 à 11:34

Léonard de Vinci, intelligence éclectique et autodidacte, côté sciences et techniques

Pascal Brioist, Professeur des Universités. Spécialiste de Léonard de Vinci, des sciences et des techniques à la Renaissance, de l'Angleterre du XVIe et du XVIIe siècle., Université de Tours
Entre une « Joconde » et une machine volante, Léonard de Vinci s’est aussi attelé aux sciences. Les recherches récentes montrent qu’il connaissait bien les développements de ses contemporains en physique, en anatomie ou en botanique.
Texte intégral (4014 mots)
Voler comme les oiseaux en battant des ailes, ou l’ornithoptère de Léonard de Vinci, conçu vers 1495. Copyright Artes Mechanicae., Fourni par l'auteur

Léonard de Vinci est incontesté comme peintre et comme inventeur, depuis la Joconde jusqu’à ses machines volantes. Ce que l’on sait moins, c’est qu’il a aussi proposé de nombreuses contributions en sciences et, de façon toujours aussi éclectique, a touché à la physique, à la géologie et à la botanique de son temps. Ces contributions montrent comment l’artiste toscan a pu accéder à des connaissances pointues bien qu’il ait été exclu des circuits traditionnels de diffusion des connaissances, en particulier de l’université.


Considéré par le philosophe Pierre Duhem, en 1900, comme le chaînon manquant entre la Science médiévale et la Science moderne, Léonard de Vinci a été depuis parfois jugé incapable d’avoir eu accès aux savoirs scientifiques et d’avoir été un piètre savant. En effet, sa naissance illégitime l’empêcha de fréquenter l’université (celle-ci était interdite aux enfants illégitimes). Certains experts ont même essayé de le cantonner au rôle de technicien et sont allés jusqu’à critiquer les machines qu’il dessina en soulignant qu’elles étaient de simples reprises de celles de prédécesseurs ou en les qualifiant d’impossibles.

Aujourd’hui cependant, l’examen attentif des écrits du Toscan prouve qu’au contraire, celui-ci avait trouvé des biais pour avoir accès à la culture qui lui était refusée et, mieux encore, avait été capable de remettre en cause par l’expérience des savoirs scolastiques – en trouvant des savants qui pouvaient lui expliquer ce à quoi il n’avait pas accès directement, par exemple le mathématicien Luca Piacioli pour accéder à Euclide, ou le médecin de Pavie Marcantonio della Torres pour comprendre les idées de Galien.

dessin de char d’assaut par un prédecesseur de léonard
Les travaux de Léonard de Vinci s’inscrivent à la suite de ceux de ses prédécesseurs. Ici un char d’assaut de Kyeser, dessiné en 1405. Bellifortis, 1405, numérisé et rendu disponible par l’Archimedes Project

Dans le domaine de la technologie, certes, il s’inspirait d’ingénieurs médiévaux comme l’architecte Filippo Brunelleschi ou les ingénieurs le Taccola et Francesco di Giorgio, mais il les dépassa en inventant une méthode de réduction en art de la mécanique (qui consiste à avoir une approche analytique de la mécanique en identifiant sur le papier tous les éléments simples, comme les engrenages, cames, échappements, ressorts, pour pouvoir composer des combinatoires agençant ces éléments de machines), en perfectionnant le dessin technique et en s’inspirant du vivant pour des machines volantes.

Ainsi, il est à l’origine de grandes percées dans les domaines multiples dans lesquels il excella – même si ses textes restèrent manuscrits jusqu’en 1883, ce qui l’empêcha de léguer ses découvertes.

De l’observation du monde aux concepts de physique

Si l’on commence par la physique, celui qui n’avait été formé ni à l’aristotélisme, ni aux théories d’Archimède, fut tout de même capable, sur le tard, capable de se faire expliquer les principes de la science de l’antiquité (comme les quatre puissances de la nature : mouvements, poids, force et percussion) et de parcourir les traités de base en latin.

Ainsi, il était parfaitement au courant de la théorie de l’antipéristase et de celle, médiévale, de l’impetus. La première disait qu’un corps lancé continue à avancer parce que l’air qui est devant lui est propulsé derrière lui et alimente la poussée. Léonard récuse cette idée en acceptant le concept d’impetus : ce qui pousse le corps, c’est une qualité d’impulsion conférée au projectile. Léonard le démontre par une expérience où il tire avec une arquebuse dans une gourde (si l’antipéristase fonctionnait, l’eau de la gourde empêcherait la balle de poursuivre sa trajectoire, ce qui n’est pas le cas).

À propos d’un autre concept de physique, celui des frottements, Léonard prouve là encore par l’étude des faits que celui-ci est proportionnel non à la surface de contact mais au poids de l’objet.

Léonard, passionné par les tourbillons, explore aussi le champ de l’hydraulique et de l’aérodynamique, on lui doit l’intuition des turbulences, des vortex de surface et des vortex profonds, des tourbillons induits, etc.


À lire aussi : De la physique à la météo, une petite histoire de la turbulence



Tous les quinze jours, de grands noms, de nouvelles voix, des sujets inédits pour décrypter l’actualité scientifique et mieux comprendre le monde. Abonnez-vous gratuitement dès aujourd’hui !


Dans le domaine de l’optique, Léonard s’inspire du mathématicien, physicien et médecin du XIe siècle Alhazen, de son vrai nom Ibn al-Haytham, est un auquel on doit une théorie moderne de l’optique, incluant des réflexions physiologiques sur l’œil, et l’introduction des mathématiques dans les sciences physiques. Grâce à la traduction d’Erasmus Vitello – Vitellion en français, un moine de Silésie du XIVe siècle, commentateur d’Alhazen et auteur d’un traité de perspective –, il étudie l’œil et les rayons lumineux qu’il considère comme émis par l’objet pour créer dans la rétine des simulacres.

tableau
La Vierge aux rochers, entre 1483 et 1486. Léonard de Vinci, au Louvre

Il construit même une « boîte noire » (ou camera obscura, sorte de caméra primitive) pour simuler ce phénomène.

Excellent cartographe, Léonard est aussi un remarquable géologue qui théorise le rôle de l’eau dans l’érosion, comprend les empilements de couches géologiques et explique l’origine des fossiles.

Enfant élevé à la campagne, il s’intéresse aussi à la botanique, dessinant toutes sortes de plantes mais cherchant aussi les règles de leur croissance. Le tableau de la Vierge aux Rochers constitue un véritable herbier virtuel.

L’anatomie, bien au-delà de l’« Homme de Vitruve »

Le domaine de l’anatomie est assurément celui où le maître est allé le plus loin. À partir de nombreuses lectures, il perfectionne les méthodes de dissection en collaborant avec des médecins de Florence, de Pavie (comme le galéniste Marcantonio Della Torre) et de Rome, produisant des dessins du corps et de ses parties d’une précision ahurissante.

Mieux encore, il découvre par des expérimentations le principe de la circulation du sang en tourbillons dans les valves aortiques, propose des interprétations du fonctionnement du système uro-génital, du système respiratoire ou du système digestif et étudie les relations du fœtus et de la matrice.

Pour comprendre l’anatomie du cerveau, et le lien entre les sens et la mémoire, il coule de la cire dans les cavités cérébrales et découpe des crânes.

Léonard et les mathématiques

C’est peut-être dans les mathématiques que Léonard fut le plus faible, malgré sa collaboration avec le Franciscain Luca Pacioli pour lequel il dessine les polyèdres de la Divina Proportione. Il n’empêche que les mathématiques ne cessent de l’inspirer et qu’il est convaincu que la nature est animée par des règles géométriques et arithmétiques.

manuscrit
Dessin de Léonard de Vinci représentant la raison géométrique de la croissance des branches d’arbres, entre 1487 et 1508. E-Leo, archive numérique des dessins de Léonard de Vinci

À lire aussi : « La recherche de la beauté est l’une des motivations principales du chercheur »


L’approche scientifique de Léonard l’amène à produire un certain nombre de traités aujourd’hui perdus mais auxquels il fait souvent allusion comme un traité sur l’eau, un traité sur le vol des oiseaux ou un traité sur les éléments de machines.

Baigner dans les inspirations des ingénieurs de son temps

Si l’on n’a guère retenu les apports de Léonard dans les sciences, en revanche, son activité d’ingénieur et d’inventeur constitue un élément clé de sa légende.

Là encore, l’activité du Toscan témoigne d’une curiosité tous azimuts dans les arts mécaniques : grues et machines de chantiers, écluses et machines hydrauliques, machines textiles, machines de fonderie, pompes, machines de guerre, machines de théâtre, automates, machines volantes…

dessin
La première description connue de parachute, vers 1470, précède de peu la description de Léonard de Vinci. Anonyme, MS 34113, f. 200v, British Library

Le chimiste Marcelin Berthelot, au début du XXe siècle, fut le premier à s’apercevoir que bien des machines de Léonard étaient inspirées du Moyen Âge. Le principe du char d’assaut, par exemple, était déjà là dans le Bellifortis, de Konrad Kyeser (1366-1406), et bien des engins de siège proposés par Léonard de Vinci à Ludovic Sforza, dans une lettre de motivation, étaient décrits par Roberto Valturio en 1472 dans le De arte militari.

Le principe du parachute avait été aussi exposé dans un manuscrit siennois de la première moitié du XVe siècle.

En ce temps où la propriété intellectuelle n’est pas vraiment stabilisée, il est fréquent que les ingénieurs reprennent les idées de leurs prédécesseurs ou de leurs contemporains. Ainsi, une scie mécanique hydraulique d’ingénieurs siennois reprend des usages techniques de moines médiévaux, et Francesco di Giorgio des idées de Brunelleschi pour des navires à aubes.

Ainsi, les carnets de Léonard sont remplis de croquis d’engins de levage ou de bateaux à aubes de Brunelleschi, de moulins et d’engrenages de Francesco di Giorgio Martini ou encore de mécanismes d’horlogerie de Della Volpaia. Il n’est pas toujours facile d’attribuer l’invention d’une machine dessinée par Léonard à ce dernier car il copie ce qui l’entoure — ce qu’il concède volontiers, par exemple quand il dit qu’un dispositif anti-frottement pour les cloches lui a été suggéré par un serrurier allemand nommé Giulio Tedesco.

Certains chercheurs, hypercritiques, en ont conclu que Léonard n’avait jamais construit une seule machine. C’est aller trop vite en besogne car certaines machines sont attestées par plusieurs témoins – les ambassadeurs de Ferrare ou de Venise, ou encore des contemporains florentins : un lion automate, par exemple, un compteur d’eau, des ponts autoportants, des mécanismes de théâtre…

De plus, quand Léonard recommande à ses apprentis de se méfier des espions qui pourraient voir ses essais de machines volantes depuis le tambour de la cathédrale de Milan ou quand il reproche à des mécaniciens allemands d’avoir copié à Rome ses projets de miroirs incendiaires, il est évident qu’il parle d’artefacts concrets.

Pour autant, tous les schémas de projets n’ont pas nécessairement été réalisés ; ce que l’on devine lorsqu’on essaye de les reconstituer… et qu’ils ne fonctionnent pas (par exemple, les engrenages d’un char d’assaut qui feraient aller les roues arrière et avant de l’appareil en sens contraire).

De plus, des machines textiles (fileuses, métiers à tisser, batteuses de feuilles d’or, tondeuses de bérets) incroyablement sophistiquées présentent des problèmes de résistance des matériaux qui rendent leur survie improbable.

Les apports effectifs de Léonard aux technologies du XVᵉ siècle

dessins de Léonard
La machine automobile de Léonard, vue de haut et en perspective. folio 812r du Codex atlanticus, dans e-Leo, archives numériques des œuvres de Léonard de Vinci

L’apport de Léonard de Vinci aux technologies est d’abord une approche méthodologique. Ainsi par exemple, dans son Traité des éléments de machines, le Toscan s’est attaché à réduire la mécanique en éléments simples (leviers, manivelles, vis, cames, ressorts, échappements, engrenages, etc.) pour pouvoir en mathématiser les effets et élaborer des combinatoires. Tout est alors question de timing, par exemple pour les fileuses automatiques, les métiers à tisser, les batteurs d’or, les machines à tailler les limes ou les polisseurs de miroirs. Vitesse et puissance fonctionnent en proportion inverse et le chercheur s’émerveille des vertus des vis et des engrenages.

Son autre apport est une élaboration nouvelle du dessin technique combinant vue de dessus, vue de profil, axonométries et éclatés.

Enfin, Léonard étonne par son investigation de domaines nouveaux, comme le vol, utilisant l’observation de la nature pour trouver des solutions mécaniques à des problèmes inédits.

Les limites du travail de Léonard sont évidentes – en mathématiques, par exemple – mais contrairement à ce que disent les critiques qui soulignent les déficiences de sa formation, elles l’amènent souvent à dépasser la tradition.


L’exposition « Léonard de Vinci et le biomimétisme, s’inspirer du vivant », dont Pascal Brioist est commissaire, est visible au Clos Lucé, à Amboise (Indre-et-Loire), du 7 juin au 10 septembre 2025.


Pour en savoir plus sur Léonard de Vinci et sa vie à contre-courant, le livre de Pascal Brioist Les Audaces de Léonard de Vinci, aux éditions Stock (2019).

The Conversation

Pascal Brioist a reçu des financements de la région Centre. J'ai reçu autrefois une APR pour un spectacle sur Marignan

20 / 25

 

  GÉNÉRALISTES
Ballast
Fakir
Interstices
Lava
La revue des médias
Le Grand Continent
Le Monde Diplo
Le Nouvel Obs
Lundi Matin
Mouais
Multitudes
Politis
Regards
Smolny
Socialter
The Conversation
UPMagazine
Usbek & Rica
Le Zéphyr
 
  Idées ‧ Politique ‧ A à F
Accattone
Contretemps
A Contretemps
Alter-éditions
CQFD
Comptoir (Le)
Déferlante (La)
Esprit
Frustration
 
  Idées ‧ Politique ‧ i à z
L'Intimiste
Jef Klak
Lignes de Crêtes
NonFiction
Nouveaux Cahiers du Socialisme
Période
Philo Mag
Terrestres
Vie des Idées
 
  ARTS
Villa Albertine
 
  THINK-TANKS
Fondation Copernic
Institut La Boétie
Institut Rousseau
 
  TECH
Dans les algorithmes
Framablog
Goodtech.info
Quadrature du Net
 
  INTERNATIONAL
Alencontre
Alterinfos
CETRI
ESSF
Inprecor
Journal des Alternatives
Guitinews
 
  MULTILINGUES
Kedistan
Quatrième Internationale
Viewpoint Magazine
+972 mag
 
  PODCASTS
Arrêt sur Images
Le Diplo
LSD
Thinkerview
 
Fiabilité 3/5
Slate
Ulyces
 
Fiabilité 1/5
Contre-Attaque
Issues
Korii
Positivr
Regain
🌞